

Feb 19-8:47 AM

Class Qviz 6

\nuse
$$
\varepsilon
$$
 and S definition of a limit

\nto prove $\lim_{x\to 2} (x^2 + 2x - 1) = 1$, then $S_{or} \varepsilon = 1$, what is your S?

\n $\int x^2 \cdot 2^2 + 2x - 1$, $0 = 2$, $1 = 1$

\n $\int x(x) = x^2 + 2x - 1$, $0 = 2$, $1 = 1$

\n $\int x(x) = 1$

\n $\int x^2 + 2x - 1 = 1$

\n $\int x^2 + 2x - 1 = 1$

\n $\int x^2 + 2x - 1 = 1$

\n $\int x^2 + 2x - 1 = 1$

\n $\int x^2 + 2x - 1 = 1$

\n $\int x^2 + 2x - 1 = 1$

\n $\int x^2 + 2x - 1 = 1$

\n $\int x^2 + 2x - 1 = 1$

\n $\int x^2 + 2x - 1 = 1$

\n $\int x^2 + 2x - 1 = 1$

\n $\int x^2 + 2x - 1 = 1$

\n $\int x^2 + 1 = 1$

\n

Sep 18-7:00 AM

 $\int_{\partial r} \varepsilon = 1$, $\int_{r} \frac{1}{r} \, dr \, dx$ $\int_{r} \frac{1}{r} \, dr$ Such that $\ln (\chi^3 + 5\chi) = 6.$ $x + 1$ $\int_{(x)z}^{x^3}$ +5x $a=t$ $L=6$ $|S(x) - L| < \epsilon$ whenever $|x - \alpha| < \delta$ $(x - 1) < 8$ $x^3 + 5x -6$ \leq $|(2^{2}+1+6)(2-1)|<\epsilon$ $1105 -6$ $1⁶$ $\mathbf{1}$ 6 0 4. $\left| \chi^2 + \chi + 6 \right| \left| \chi - 1 \right| \leq C$ Bound Keep $T\$ $S \leq L$ then $|x-1| < L$ $-1<\chi-1<1$ $0<\lambda<2$ $13x=0$, $x^2+1x+6=6$
 $\rightarrow 6 < x^2x+6 < 12$ $15x-2$, $x^2+x+6=12$ $|x^2+x+6|<12$ $|x^2+x+6| |x-1| \leq |2|x-1| \leq \epsilon$ $|x-1|\leq \frac{\varepsilon}{12}$ $\frac{\epsilon}{\epsilon}$ min $\frac{\epsilon}{\epsilon}$ $\frac{\epsilon}{\epsilon}$ when $\epsilon = 1 \rightarrow \epsilon = min \{1, \frac{12}{12}\} = \frac{12}{12}$

Sep 18-7:47 AM

 S_{or} a) \circ , Prove $\lim_{x\to a} \sqrt{x} = \sqrt{a}$ $\oint (x) = \sqrt{x} \qquad \qquad \alpha = \alpha \qquad \qquad \Box = \sqrt{\alpha} \ \sqrt{x}$ $[0, \infty)$ $|f(x)-L| \le \omega$ whenever $|x-a| \le \delta$ $|\sqrt{x} - \sqrt{\alpha}| \leq \epsilon$. $|\sqrt{x} - \alpha| \leq \delta$ $\frac{\sqrt{x}-\sqrt{x}}{1} \cdot \frac{\sqrt{x}+\sqrt{x}}{\sqrt{x}+\sqrt{x}} \leq 1$ $\frac{\chi - \alpha}{\sqrt{\kappa} + \sqrt{\alpha}} \leq \varepsilon$ $\frac{|x-\alpha|}{\sqrt{x}+\sqrt{a}}\leq \epsilon$ $\left(\frac{1}{\sqrt{x}}\right)|x-a| < \epsilon$ Bound $\frac{6x + 10}{x}$ $\begin{array}{c|c|c|c} \hline \mathcal{M} & \mathcal{M} & \mathcal{M} & \mathcal{M} \\ \hline \mathcal{M} & \mathcal{M} & \mathcal{M} & \mathcal{M} \\ \hline \mathcal{M} & \mathcal{M} & \mathcal{M} & \mathcal{M} \\ \hline \mathcal{M} & \mathcal{M} & \mathcal{M} & \mathcal{M} \\ \hline \mathcal{M} & \mathcal{M} & \mathcal{M} & \mathcal{M} \\ \hline \mathcal{M} & \mathcal{M} & \mathcal{M} & \mathcal{M} \\ \hline \mathcal{M} & \mathcal{M} & \mathcal{$ $-\frac{\alpha}{2}$ +a $\leq x \leq \frac{\alpha}{2}$ + a $\frac{a}{2}$ $\left\langle x \right\rangle \frac{3a}{2}$ $\sqrt{\frac{2\xi}{2}}\sqrt{\sqrt{\chi}}\sqrt{\frac{30}{2}}$ $\frac{1}{\sqrt{\frac{2}{5}}}\frac{\sqrt{16}}{\sqrt{15}}\sqrt{\frac{1}{24}}\sqrt{\frac{1}{24}}\sqrt{\frac{1}{24}}\sqrt{\frac{1}{24}}\sqrt{\frac{1}{24}}\sqrt{\frac{1}{24}}\sqrt{\frac{1}{24}}\sqrt{\frac{1}{24}}\sqrt{\frac{1}{24}}$ $\frac{1}{\sqrt{\frac{2\alpha}{\sqrt{\lambda}}\sqrt{\frac{\alpha}{\sqrt{\lambda}}}}}\geqslant \frac{1}{\sqrt{\lambda}\sqrt{\lambda}}\leqslant \frac{1}{\sqrt{\lambda}}\frac{1}{\sqrt{\lambda}}\leqslant 1$ $\frac{\mathcal{E}}{\mathcal{C}} = \frac{\mathcal{E}}{\frac{1}{\sqrt{\frac{\mathbf{a}}{\mathcal{E}}}}\sqrt{\mathbf{a}}}$ $\frac{1}{2}\left(\sqrt{\frac{D_{\rm c}}{2}}\sqrt{\frac{1}{2}}L\right) \zeta$

Sep 18-7:59 AM

Sind a Sormula Sor the slope of tangent line to the graph of $f(x) = 6$ sx at any point on the graph s_{x} Recall $\mathscr{L}(\mathfrak{X},\mathfrak{c} \mathfrak{c} \mathfrak{x})$ $\cos(A+B)$ - BJ $m = \lim_{h \to 0} \frac{S(x+h) - S(x)}{h}$ \prec CosA CosB - SinASinE $h+0$ $h+0$
= hm $\frac{(cos(x+h) - cosx)}{h+0}$ = lim <mark>Cosx Cosh - SinxSchh - Cosx</mark>
h+0 $\frac{1}{h}$ = $\lim_{h \to 0} \left[\frac{\cos \lambda (c_0 h - 1)}{h} - \frac{\sin \lambda \sin h}{h} \right]$ μ h_{0} $\frac{\hbar \omega}{\hbar}$
 $\lim_{h \to 0}$ $\frac{\frac{\cos h}{h}(\cosh - 1)}{\hbar}$ $\frac{\omega}{h}$ $\lim_{h \to 0}$ $\frac{\sin h}{h}$ \mathcal{A}^1 $= \cos x \sqrt{\lim_{h \to 0} \frac{\cosh^{-1}}{h}}$ $-\sin x \cdot \lim_{h \to 0} \frac{\sin h}{h}$ $\frac{\lim_{h\to 0} \frac{\cos h}{h}}{h}$ = $\cos x \cdot 0$ - $\sin x \cdot 1 = \boxed{-\sin x}$ If $S(x) = Strx$, then $m_{\text{tan, line}} = Cos x$ at any pt $m_{\text{tan. line}}$ $TS = S(x) = \cos x$, then at any M

Sep 18-8:19 AM

I

Find equation of tan. line to the graph

\nof
$$
\int (x) = \cos x
$$
 at $x = \frac{\pi}{3}$.

\nSo, $\int (x) = \cos x$ at $x = \frac{\pi}{3}$.

\nSo, $\int \frac{\pi}{3}, \frac{1}{2}$.

\nSo, $\int \frac{\pi}{3}, \frac{1}{2}$.

\nSo, $\int \frac{\pi}{3}, \frac{1}{2}$.

\nSo, $\int \frac{\pi}{3} = -\sin x \left(\frac{x - x_1}{3} \right)$.

\nSo, $\int \frac{1}{2} = -\frac{\sqrt{3}}{2} (x - \frac{\pi}{3})$.

\nSo, $\int \frac{\pi}{2} = \frac{\sqrt{3}}{2} (x - \frac{\pi}{3})$.

\nSo, $\int \frac{\pi}{2} = \frac{\sqrt{3}}{2} (x - \frac{\pi}{3})$.